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1. INTRODUCTION

In Ref. 1, it was indicated that the stability boundaries could be mode-

shape dependent. It was also suggested that the equations of Ref. 1 could be

used as a basis for a parametric investigation from which an optimum blade con-

figuration from the flutter point of view could be defined. Due to the limited

amount of time available for the preparation of this report, it was decided to

limit the study to the investigation of the effect of the mode shape on the

flap-lag and flap-pitch stability boundaries together with the effect of the

built-in coning a on the stability of hingeless blades. The study was per-

formed using the equations of motion, stability boundaries,and computer pro-

grams described in detail in Ref. 1. The important effect of elastic coupling

on these stability boundaries was neglected, for reasons similar to those

given in Ref. 1.

2. EQUATIONS OF MOTION, STABILITY BOUNDARIES, AND

COMPUTER PROGRAMS USED

2.1 The Linearized Equations

The linearized equations of motion for coupled flap-lag-pitch motion

of a hingeless blade in hover are given in Ref. 1, Eqs. 9.24, 9.25, and 9.27.

The various flutter derivatives used in these equations are defined by the ap-

propriate relations in Appendix N of Ref. 1.

2.2 The Nonlinear Equations

The complete nonlinear equations for coupled flap-lag-pitch motion of

a hingeless blade in hover are given by Eqs. 9.28 through 9.30 of Ref. 1. The

flutter derivatives and the appropriate nonlinear functions which are to be

used with these equations are given in Appendices N and O of Ref. 1.

2.3 The Stability Boundaries

The static stability boundaries used in this report are the "approximate

divergence boundaries" defined by Eqs. 10.1 through 10.3 of Ref. 1.

The dynamic stability or flutter boundaries for flap-lag, flap-pitch, and

coupled flap-lag-pitch are given, respectively, by Eqs. 4.4, 4.5, 10.12, and

10.6 of Ref. 1.
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2.4 Computer Programs

The computer programs used for evaluating the divergence and flutter

boundaries were those described in Ref. 1.

A new computer program has been developed for integrating the nonlinear

coupled flap-lag-pitch equations of motion in hover using the predictor-cor-

rector method.

3. RESULTS AND DISCUSSION

3.1 Effect of Mode Shape on the Stability Boundaries

3.1.1 Introductory Remarks

As pointed out in conclusion No. 1 of Subsection 12.2 in Ref. 1, the

stability boundaries obtained could be quite sensitive to the assumed mode

shape because the various coefficients which appear in the equations of motion

(representing generalized masses and forces) are themselves mode-shape dependent.

It was also implied in Ref. 1 that the static equilibrium position of the blade,

which is dependent upon the assumed mode shape, could have a considerable ef-

fect on the location of the stability boundaries.

In Ref. 1, an assumed mode shape given by

-(1 4
( - 3)[1 - 4xo - (1 - (1)

was used. Where nl is the first flapwise normal bending mode, x = (x - el)/Z,

2 is the length of the blade capable of elastic deflection and el is an offset.

The geometry of the problem is shown in Figs. 1 and 27 of Ref. 1. The mode shape

represented by Eq. 1 closely resembles the first mode shape of a nonrotating

cantilever beam. It was also assumed that the mode shape in flap is the same as

the mode shape in lag. Inherent in the analysis of Ref. 1 is the assumption

that the mode shape is unaffected by the rotation of the blade and the first

rotating flap or lag frequency is obtained by a process analogous to the classi-

cal Southwell coefficient (Appendix A, Ref. 1). All cases treated in Ref. 1

had constant mass and stiffness distributions along the span of the blade.

It seemed therefore reasonable to investigate how the stability boundaries
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obtained in Ref. 1 will be affected by other representations of the mode shape.

Various approaches for modelling the first mode shape in flap (or lag) of a

hingeless blade are feasible:

(1) Assume that the first and higher rotating mode shapes

can be represented by a series of nonrotating mode

shapes. The use of Galerkin's method to solve this free-

vibration problem of a rotating beam will yield the first

(and higher) rotating mode shapes and frequencies. This

approach has been used in Ref. 2. For uniform mass and

stiffness distribution, it was found in Ref. 2 that the

first and second bending mode shapes may change appreci-

ably with the rotational speed.

Using the rotating mode shape obtained from this type of

analysis as an input for the calculation of the flutter

boundaries could yield reasonably accurate boundaries.

The drawback in using this method in a trend-type-study

such as Ref. 1 is due to the fact that for each point on

the flutter boundary, a mass and stiffness distribution

must be specified, together with a certain speed of rota-

tion. Thus, first an eigenvalue problem must be solved

to obtain the rotating mode shape and then the flutter

boundary point must be obtained. This procedure implies

the recomputation of the generalized mass and force coef-

ficients, defined in Appendices B, C, and M of Ref. 1

for each point along the flutter boundary. Such a pro-

cedure will increase the computing time required to ob-

tain a point on the flutter boundary by a factor of

three (approximately).

(2) Use Young's offset hinged spring restrained repre-

sentation of the hingeless blade as derived in Ref. 3 and

used in Ref. 4. According to Young, a reasonable repre-

sentation of the first modal bending of a hingeless blade

may be obtained by a rigid articulated blade restrained
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about its offset flapping hinge by a torsional spring

whose stiffness matches the first nonrotating fre-

quency of the hingeless blade and the offset is such

that the two systems have the same rotating frequency.

This model was used in Ref. 4 for stability and control cal-

culations of helicopters having hingeless blades, with the con-

clusion that it can be used as an approximate representation

for blades with uniform mass and stiffness distribution.

(3) Another approximate representation of the hingeless blade

has been suggested in Ref. 5 by Bramwell. Bramwell's

model is based upon the assumption that the elastic term

in the free vibration equation representing the flap-

bending motion of a rotating cantilever beam is negligible

when compared with the centrifugal term. With this assump-

tion an approximate geometric hinge offset can be defined

using only the first rotating frequency of the blade. As

pointed out in Ref. 5, this approximation is quite good

for a particular type of hingeless blade which has its

stiffness (and mass) concentrated near the root.

When choosing one of the three methods mentioned above, it is clear

that the best method to use is method (1). Unfortunately, due to various time

limitations, it could not be adopted and it was decided to use Young's method

for the hingeless blade because it is superior to Bramwell's for uniform mass

and stiffness distribution.

3.1.2 Remarks Concerning the Use of Young's Blade

Model in the Present Report

In using Young's offset-hinged spring-restrained model for the hingeless

blade, the quantity L/R (2 - length of blade capable of elastic deflection,

R - radius of the blade tip path) was always taken as equal to 1, and the mode

shape in both flap and lag was assumed to be defined by the following relations

(e1 = 0, Xo x):
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l = ° for 0 < x < e

x -z
0 - -o _ _

= _ for e < x < 1
1 - e

where e = e/R is the offset used in representing the blade by Young's model.

The correct use of Young's model for a hingeless blade would require a

different value of the offset e for the mode shape in flap and the mode shape

in lag. In addition, these values of the offsets should be changed when moving---

from one point on the stability boundary to another one.

In Ref. 1, the same assumed mode shape was used for both flap and lag.

Thus, in order to evaluate the effect of the mode shape on the stability

boundaries of Ref.1, the same value of the offset e was used in both the flap

and lag direction. It was also assumed that the offset e is fixed for a whole

stability boundary plot. This is equivalent to using the same assumed mode

shape (Eq. 1) for a whole stability boundary.

Due to the assumptions mentioned above, the results which will be

presented should be considered to be illustrations indicating trends and not

accurate stability boundaries for a particular blade.

3.1.3 Effect of the Mode Shape on the Divergence Boundaries

In order to obtain the effect of the assumed mode shape on the linearized

approximate divergence boundaries (Eqs. 10.1 through 10.3 of Ref. 1), Fig. 33

of Ref. 1 was recalculated for two values of e: e = .15 and e = .20. It was

found that the approximate divergence boundaries were almost completely un-

affected by the mode shape. The reason is probably due to the fact that the

approximate divergence boundaries are,by definition,independent of the initial
o o

flap, lag, and torsional amplitudes (denoted by gl, hl, and o', respectively,

in Ref. 1) which are the quantities influenced by changing the mode shape.

3.1.4 Effect of the Mode Shape on the Flap-Lag

Stability Boundaries

To illustrate this effect, the flutter boundary in flap-lag for e = .20

(Fig. 4, Ref. 1) was recomputed using two different values of e: e = .15 and
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e = .20. The inflow relation used for calculating this stability boundary is

given by Eq. 5.5 of Ref. 1. The results obtained are shown in Fig. 1; the

notation used in the figure is defined below:

a = 2n = two-dimensional lift-curve slope

Cd = profile drag coefficient
o

a = blade solidity

y = Locke number

nSFl'nSL1 = structural damping in flap and lag, respectively

WF1 = first rotating flap frequency nondimensionalized

with respect to Q

(L1 = first rotating lag frequency nondimensionalized

with respect to Q

Q = speed of rotation of the blade

0 = the critical value of collective pitch setting
c

above which the blade is unstable in flap-lag

The unstable regions are the combinations of rotating flap and lag

frequencies which lie inside the ellipse-like stability boundary. Figure 1

shows the effect of the mode shape on the stability boundary. Different values

of e can be considered to represent different mode shapes. As can be seen, de-

creasing e reduces the unstable areas inside the stability boundary.

Although the purpose of the curves is only to illustrate that the sta-

bility boundaries are mode-shape sensitive, one can still conclude that this

indicates that in calculating stability boundaries which are to be used for

design purposes, the correct rotating mode shape should be used to get a repre-

sentative stability boundary.

3.1.4 The Effect of the Mode Shape on the Flap-Pitch

Stability Boundary

In order to illustrate the effect of the mode shape on the flap-pitch

stability boundary, Fig. 40 of Ref. 1 was recalculated for two values of the

nondimensional hinge offset e: e = .15 and e = .20.

6



flow

used

The stability boundaries shown in Fig. 2 were evaluated using the in-

given by Eq. 7.3 of Ref. 1. For the sake of completeness, the notation

in Fig. 2 is defined below:

8 = critical collective pitch setting above whichc
the blade is unstable in flap pitch

w = torsional frequency nondimensionalized
o

with respect to S

b = blade half-chord nondimensionalized

with respect to Q

I = If/I = inertia ratio

I = polar moment of inertia of the whole blade

Ib - = mass moment of inertia of the elastic part of

the blade about its root, defined in Appendix B,

Ref. 1

Again, Fig. 2 shows that the stability boundaries in flap-pitch are

mode-shape sensitive.

It is of interest to note that for both the flap-lag and flap-pitch-type

of instability,decreasing the offset e from .20 to .15 tends to decrease the

unstable regions under the stability boundary.

3.2 Effect of Built-In Coning p on the Stability Boundaries
P

In Ref. 1, it was shown that the angle of built-in coning B3 (defined

in Fig. 27b of Ref. 1) had a considerable effect on the divergence boundaries

of a hingeless blade. Some hingeless blades have a certain amount of built-in

coning in order to relieve blade stresses; therefore, it seemed reasonable to

investigate the effect of built-in coning on the flap-lag and flap-pitch

stability boundaries.
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3.2.1 Effect of Built-In Coning on the Flap-Pitch

Stability Boundary

This effect is illustrated by Fig. 3. The inflow for this calculation

was evaluated using Eq. 7.3 of Ref. 1. The pertinent data for this calculation

is given in Fig. 3. The collective pitch setting for this case was e = .17.

As can be seen, a positive amount of built-in coning is slightly destabilizing for

this type of instability. Around S = 2° , this destabilizing effect is the
P

strongest; beyond this value the destabilizing effect is somewhat weaker. On

the other hand, a small amount of negative built-in coning is quite stabilizing for

the flap-pitch-type of instability. From Fig. 3, a negative built-in coning

angle of p = - .650 can considerably reduce the minimal torsional stiffness

required for stability. Thus, built-in coning could be a possible simple

method of stabilizing blades which have flap-pitch-type of stability problems.

It is important to note again that this effect too, can be very much dependent

upon the assumed mode shape, and the discussion of the previous section regard-

ing mode shape effects on the stability boundary is applicable to this case

also.

3.2.2 Effect of Built-In Coning on the Flap-Lag-Type of

Stability Boundary

For simulating this effect, the coupled flap-lag-pitch program was used

with a high value for the torsional stiffness, w = 100, thus effectively

eliminating the torsional degree of freedom. The effect of built-in coning

was investigated for the following cases:

(a) WF1 = 1.175; WLl = 1.075764; W = 100

(b) WF1 = 1.175; uL1 = 1.28303; u = 100

These two cases correspond, respectively, to the lower and upper branch

of the stability boundary points for 0 = .20 and wF1 = 1.175 (Fig. 8, Ref. 1)

with the inflow calculated from Eq. 7.3 of Ref. 1. The various other parameters

used in the calculation are given in Fig. 4. For these two cases, the effect

of 6 on the flutter boundary is quite similar and the two curves are coincident

for all practical purposes. From the numerical values obtained, it was found
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that the values of e for the two curves agree up to the third decimal digit.
c

As can be seen from Fig. 4, positive values of p are strongly de-

stabilizing for the flap-lag-type of instability. On the other hand, a small

amount of negative built-in coning is quite stabilizing.

Again, it should be emphasized that these results are mode-shape de-

pendent. In fact the stability boundary given in Fig. 4 was recalculated using

Young's model for the hingeless blade with e = .20 and from the results it was

found that the effect of the mode shape is of the same magnitude as that illus-

trated by Fig. 1.

3.3 Numerical Integration of the Coupled Nonlinear Flap-Lag-

Pitch Equations of Motion in Hover

A computer program was developed for integrating these nonlinear equa-

tions as explained in Subsections 2.2 and 2.4. Due to the limited amount of

time available, only a small number of cases was considered. The results are

inconclusive, although it seems that with the torsional degree of freedom in

the equation, the limit cycle amplitudes are much smaller than those obtained

for the flap-lag-type of instability considered in Ref. 1.

4. CONCLUSIONS

(1) The stability boundaries in both flap-lag and flap-pitch

are mode-shape dependent. Thus, in the calculation of

stability boundaries which are to be used in hingeless

blade design, the use of the exact rotating mode shape

(or mode shapes) is recommended.

(2) For the cases considered, positive built-in coning seems to

have a minor destabilizing effect on the flap-pitch-type

of instability, while a small amount of negative built-in

coning is quite stabilizing.

(3) For the cases considered, positive built-in coning has a

strongly destabilizing effect on the flap-lag-type of in-

stability, while negative built-in coning is quite stabilizing.
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